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Cycles with two blocks in k-chromatic digraphs
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Abstract

Let k and ℓ be positive integers. A cycle with two blocks c(k, ℓ) is an oriented cycle which
consists of two internally (vertex) disjoint directed paths of lengths at least k and ℓ, respectively,
from a vertex to another one. A problem of Addario-Berry, Havet and Thomassé [1] asked if,
given positive integers k and ℓ such that k+ℓ ≥ 4, any strongly connected digraph D containing
no c(k, ℓ) has chromatic number at most k+ ℓ− 1. In this paper, we show that such digraph D

has chromatic number at most O((k+ ℓ)2), improving the previous upper bound O((k+ ℓ)4) of
[6]. In fact, we are able to find a digraph which shows that the answer to the above problem of
[1] is no. We also show that if in addition D is Hamiltonian, then its underlying simple graph
is (k + ℓ− 1)-degenerate and thus the chromatic number of D is at most k + ℓ, which is tight.

Keywords: Digraph coloring; Chromatic number; Cycle with two blocks; Strongly connected di-
graph

2010 Mathematics Subject Classification: 05C15, 05C20

1 Introduction

Throughout this paper, all graphs G and digraphs D are simple, that is, there are no loops and no
multiple edges in G or D (though a pair of opposite arcs is allowed in D). Unless otherwise specified,
by a path, a walk or a cycle in a digraph D we always mean a directed one. The length |P | of a walk
P is the number of arcs it contains. An orientation of a graph G is a digraph obtained by giving a
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direction to each edge of G, and the underlying graph of a digraph D is the simple graph obtained
by ignoring the directions of the arcs. The chromatic number χ(D) of a digraph D is the chromatic
number of its underlying graph. And we say D is n-chromatic if χ(D) = n.

A classic theorem of Gallai and Roy [14, 15] says that any n-chromatic digraph contains a path
with n vertices. This motivates the study of n-universal digraphs, that is, digraphs contained in any
n-chromatic digraphs. It is known that n-universal digraphs must be oriented trees (an orientation
of an undirected tree), and Burr [4] conjectured that every oriented tree of n vertices is (2n − 2)-
universal, which is remained to be open (for more information see [8, 10, 12, 13]). For positive
integers k and ℓ, a path with two blocks P (k, ℓ) is an orientation of the undirected path of k + ℓ + 1
vertices having two maximal paths, that is, either starting with k forward arcs followed by ℓ backward
arcs, or starting with k backward arcs followed by ℓ forward arcs. In [7], El-Sahili conjectured that
every path of n ≥ 4 vertices with two blocks is n-universal. El-Sahili and Kouider [9] proved that
every such path is (n + 1)-universal, and then Addario-Berry, Havet, and Thomassé [1] confirmed
the conjecture.

For positive integers k and ℓ, a cycle with two blocks c(k, ℓ) (or we call it a 2-block cycle) is a
digraph obtained by an orientation of an undirected cycle, which consists of two internally (vertex)
disjoint paths of lengths at least k and ℓ, respectively, from a vertex to another one. A natural
question is to ask if a digraph with high chromatic number can contain a 2-block cycle c(k, ℓ). In
[2], Benhocine and Wojda proved that every tournament of n ≥ 4 vertices contains a 2-block cycle
c(k, ℓ) for any positive integers k, ℓ with k + ℓ = n. However, for general digraphs the answer is no:
as shown by Gyárfás and Thomassen (see [1]), there exist digraphs with arbitrary large chromatic
number which contain no cycles with two blocks. A digraph D is strongly connected (or strong, for
short) if for any two vertices u and v of D, there are a path from u to v and a path from v to u. The
authors of [1] noticed that the digraphs found by Gyárfás and Thomassen are not strongly connected,
and they proposed the following problem on cycles with two blocks for strongly connected digraphs.

Problem 1.1 (Addario-Berry, Havet, and Thomassé, [1]). Let D be an n-chromatic strongly con-
nected digraph, n ≥ 4, and let k and ℓ be positive integers such that k + ℓ = n. Does such D contain
a 2-block cycle c(k, ℓ)?

This problem also can be viewed as an extension of the following classic theorem of Bondy [3],
which asserts the statement for cycles. (A cycle can be considered as a 2-block cycle c(k, 0).)

Theorem 1.2 (Bondy, [3]). Any strong digraph D contains a cycle of length at least χ(D).

We mention that a different extension of Bondy’s theorem was obtained in [5]. Very recently,
among other results, Cohen, Havet, Lochet, and Nisse [6] firstly obtained a finite upper bound of
χ(D) for strong digraphs D containing no c(k, ℓ). Precisely, they proved the following:

Theorem 1.3 (Cohen, Havet, Lochet, and Nisse, [6]). Let k and ℓ be integers such that k ≥ ℓ ≥ 2
and k ≥ 4, and D a strong digraph with no 2-block cycle c(k, ℓ). Then

χ(D) ≤ (k + ℓ− 2)(k + ℓ− 3)(2ℓ+ 2)(k + ℓ+ 1).

In this paper, we improve the above upper bound O((k + ℓ)4) to O((k + ℓ)2) by using a quite
different approach from [6]. The following is our main result.
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Figure 1: A tight example for Theorem 1.5

Theorem 1.4. Let k and ℓ be integers such that k ≥ ℓ ≥ 1 and k ≥ 2, and D a strong digraph with
no 2-block cycle c(k, ℓ). Then

χ(D) ≤ 2(2k − 3)(k + 2ℓ− 1) < 12k2.

As a key step and a result of independent interest, we consider Hamiltonian digraphs and obtain
the following tight result. A digraph D is Hamiltonian, if it contains a Hamiltonian cycle, that is,
a cycle passing through all vertices of D. For a positive integer d, a digraph D is d-degenerate, if
its underlying graph G is d-degenerate, that is, any subgraph of G contains a vertex having at most
d neighbors (or having degree at most d) in it. Note that if a graph G is d-generate, then it is
(d+ 1)-colorable.

Theorem 1.5. Let k and ℓ be positive integers such that k + ℓ ≥ 3, and D a Hamiltonian digraph
with no 2-block cycle c(k, ℓ). Then D is (k + ℓ− 1)-degenerate, which implies that χ(D) ≤ k + ℓ.

When k = ℓ = 1, if a Hamiltonian digraph D has no 2-block cycle c(k, ℓ), then D is an induced
cycle and so χ(D) ≤ 3 = k + ℓ + 1 and the equality holds only when D is an odd cycle. To see the
tightness of Theorem 1.5, we consider the strong tournament T in Figure 1, which contains no c(4, 1)
and has χ(T ) = 5. We remark that this tournament T answers Problem 1.1 negatively (for k = 4
and ℓ = 1).

We introduce some basic notations and terminologies. Let D be a digraph. For two walks P and
Q of D, if the terminal vertex of P and the starting vertex of Q are the same, then we denote by
P + Q the walk through P and then Q. For a cycle C of D and any two vertices u and v on C,
we denote by uCv the subpath of C from u to v along C. For S ⊆ V (D), we denote by D[S] the
induced subdigraph of D on the vertex set S. Let G be a graph. For a vertex u of G, the neighborhood
NG(u) of u contains all neighbors of u in G, and the closed neighborhood NG[u] of u is defined by
NG[u] := NG(u) ∪ {u}. In addition, we denote by δ(G) = minu∈V (G) |NG(u)|. For a positive integer
k, denote [k] := {1, 2, ..., k}.

The paper is organized as follows. In Section 2, we prove Theorem 1.5 for Hamiltonian digraphs.
And in Section 3, we complete the proof of Theorem 1.4 for general strong digraphs.

2 Hamiltonian Digraphs: Proof of Theorem 1.5

We devote this section to prove Theorem 1.5. Throughout this section, if D is a digraph, G is its
underlying graph, and S ⊂ A(D), then we allow, with slight abuse of notation, to denote by E(S)
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for the set of edges of G obtained by ignoring the directions of arcs of S. We begin with the following
useful lemma, which will be iteratively applied later.

Lemma 2.1. Let D be a digraph which has a Hamiltonian cycle C, and G its underlying graph.
Suppose that u, v, x, y are four distinct vertices such that uv, xy ∈ E(G)\E(C) such that x ∈ V (uCv)
and y ∈ V (vCu) (see Figure 2). For positive integers k and ℓ, if |uCx| ≥ k − 1 and |vCy| ≥ ℓ− 1,
then D contains a 2-block cycle c(k, ℓ), unless one of the following occurs:

(a) |uCx| = k − 1 and (u, v), (y, x) ∈ A(D), or

(b) |vCy| = ℓ− 1 and (v, u), (x, y) ∈ A(D).

u

v

x

y

length≥ k − 1

length≥ ℓ − 1

u

v

x

y

length= k − 1

length≥ ℓ − 1

(a)

u

v

x

y

length≥ k − 1

length= ℓ − 1

(b)

Figure 2: Figures for Lemma 2.1

Proof. Note that there are four difference cases of the directions of the edges uv and xy. If
(u, v), (x, y) ∈ A(D), then uCx + (x, y) and (u, v) + vCy are internally disjoint paths from u
to y of length |uCx| + 1 and |vCy| + 1, respectively. If (u, v), (y, x) ∈ A(D), then uCx and
(u, v) + vCy + (y, x) are internally disjoint paths from u to x of length |uCx| and |vCy| + 2, re-
spectively. If (v, u), (x, y) ∈ A(D), then (v, u) + uCx + (x, y) and vCy are internally disjoint paths
from v to y of length |uCx|+2 and |vCy|, respectively. If (v, u), (y, x) ∈ A(D), then (v, u)+uCx and
vCy+ (y, x) are internally disjoint paths from v to x of length |uCx|+1 and |vCy|+1, respectively.
Now it is easy to verify the conclusion, under the above observations.

The following lemma will be essential for Theorem 1.5.

Lemma 2.2. Let k and ℓ be positive integers such that k + ℓ ≥ 3. Let D be a Hamiltonian digraph
and G its underlying graph. If δ(G) ≥ k + ℓ, then D contains a 2-block cycle c(k, ℓ).

Proof. Suppose for a contradiction that D has no 2-block cycle c(k, ℓ). Let C = v0, v1, ..., vn−1, v0 be
a Hamiltonian cycle of D, where n = |V (D)| ≥ k + ℓ+ 1.

Claim 1: There is no r such that either vrvr+k+1 ∈ E(G) or vrvr+ℓ+1 ∈ E(G).
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Figure 3: Figures for Claim 1

Proof of Claim 1. Suppose that such r exists. By symmetry between k and ℓ, we may assume that
v0vk+1 ∈ E(G). Note that v0, v1, . . ., vk+ℓ are distinct vertices in G, since k + ℓ+ 1 ≤ |V (G)|. Thus
v0vk+1 is an edge not in E(C) if |V (G)| = n > k + 2. To reach the final contradiction, we prove a
series of assertions (1.1) ∼ (1.4) as follows (see Figure 3 for illustration).

(1.1) NG[vk] = V (v0Cvk+ℓ).

Suppose not, then in view of |NG(vk)| ≥ k + ℓ, vk has a neighbor w ∈ V (vk+ℓ+1Cvn−1) in G. Then
k + ℓ + 1 ≤ n − 1 or k + 2 < n. Thus the edges v0vk+1 and vkw are in G but not in E(C). Since
|v0Cvk| ≥ k and |vk+1Cw| ≥ ℓ, Lemma 2.1 then forces a 2-block cycle c(k, ℓ) in D. This contradiction
completes the proof of (1.1).

(1.2) If ℓ ≥ 2, then (vk+1, v0), (vk, vk+ℓ) ∈ A(D).

Suppose that ℓ ≥ 2. Then vkvk+ℓ ∈ E(G) \E(C). Moreover, n > k + 2 and so v0vk+1 is not an edge
of E(C). By considering the pair of edges v0vk+1 and vkvk+ℓ of G not in E(C), since |v0Cvk| ≥ k
and |vk+1Cvk+ℓ

| ≥ ℓ− 1, Lemma 2.1 shows that, to avoid c(k, ℓ), the orientation of these edges in D
are (vk+1, v0), (vk, vk+ℓ) ∈ A(D).

(1.3) k ≥ 2 and thus, vk−1 is a vertex distinct from v0.

Otherwise, k = 1 and so ℓ ≥ 2, implying that (vk, vk+ℓ) ∈ A(D) by (1.2); then the arc (vk, vk+ℓ) and
the path vkCvk+ℓ together form a 2-block cycle c(k, ℓ) (where k = 1), a contradiction.

(1.4) NG[vk−1] = V (v0Cvk+ℓ).

Suppose not, then in view of |NG(vk−1)| ≥ k+ℓ, vk−1 has a neighbor w ∈ V (vk+ℓ+1Cvn−1) in G. Then
k + ℓ+ 1 ≤ n− 1 or k + 2 < n, and so v0vk+1 ∈ E(G) \ E(C). By (1.3), as k ≥ 2, vk−1 6= v0, and so
vk−1w ∈ E(G)\E(C). By considering two edges v0vk+1, vk−1w ∈ E(G)\E(C), since |v0Cvk−1| = k−1
and |vk+1Cw| ≥ ℓ, by Lemma 2.1, we get that (v0, vk+1), (w, vk−1) ∈ A(D). We can not have ℓ ≥ 2,
as otherwise it would contradict (1.2). Thus, ℓ = 1, then the path v0Cvk+1 and the arc (v0, vk+1)
form a 2-block cycle c(k, ℓ) (where ℓ = 1), a contradiction. This proves (1.4).

As k ≥ 2, we now observe that v0vk and vk−1vk+ℓ are edges of E(G) \ E(C). Since |v0Cvk−1| =
k − 1 and |vkCvk+ℓ| = ℓ, applying Lemma 2.1, we obtain that (v0, vk), (vk+ℓ, vk−1) ∈ A(D). If
(vk+1, v0) ∈ A(D), then the paths (vk+1, v0) + v0Cvk−1 and vk+1Cvk+ℓ + (vk+ℓ, vk−1) form a 2-block
cycle c(k, ℓ) of D, a contradiction. Hence, we must have (v0, vk+1) ∈ A(D) and by (1.2), we have
ℓ = 1. Then (v0, vk+1) and v0Cvk+1 form a 2-block cycle c(k, ℓ) (where ℓ = 1). This completes the
proof of Claim 1.
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Figure 4: Figures for Lemma 2.2

As k + ℓ ≥ 3, from now on we may assume that ℓ ≥ 2. We choose two vertices u and v such
that uv ∈ E(G) \ E(C) and the length of uCv is as small as possible but at least k + 1. Note that
such an edge uv exists as δ(G) ≥ k + ℓ ≥ k + 2. We may assume that u = v0 and v = vr where
n− 1 > r ≥ k+1. By Claim 1, it follows that r ≥ k+2 ≥ 3 (See Figure 4 (i)). We also note that by
the minimality of r, vr has at most k+1 neighbors in V (v0Cvr) and so it has at least ℓ−1 neighbors
in V (vr+1Cvn−1) and so ℓ− 1 ≤ n− r − 1 and so r + ℓ− 1 ≤ n− 1. Thus, v0, v1, . . . , vr+ℓ−2, vr+ℓ−1

are all distinct vertices in G.

Claim 2: NG[vr−1] = V (vr−k−1Cvr+ℓ−1) and NG[vr−2] = V (vr−k−2Cvr+ℓ−2).

Proof of Claim 2. By the minimality of r, we observe that vr−1 has no neighbors in V (v0Cvr−k−2).
If vr−1 has a neighbor w in V (vr+ℓCvn−1), then by Lemma 2.1, the edges v0vr, vr−1w ∈ E(G) \E(C)
force a 2-block cycle c(k, ℓ) in D, a contradiction. Therefore, NG(vr−1) ⊆ V (vr−k−1Cvr+ℓ−1). As vr−1

has at least k + ℓ neighbors in G, it follows that NG[vr−1] = V (vr−k−1Cvr+ℓ−1).
Consider vr−2. If vr−2 has a neighbor w in V (vr+ℓCvn−1), then by Lemma 2.1, the edges

v0vr, vr−2w ∈ E(G) \ E(C) force a 2-block cycle c(k, ℓ), a contradiction. Moreover, by Claim 1,
vr+ℓ−1 is not a neighbor of vr−2. Therefore, we conclude that NG(vr−2) is a subset of V (v0Cvr+ℓ−2).
If r = k + 2, then v0 = vr−k−2 and so NG(vr−2) ⊆ V (vr−k−2Cvr+ℓ−2). When r ≥ k + 3, by the
minimality of r, one can observe that vr−2 has no neighbors in V (v0Cvr−k−3), which implies that
NG(vr−2) ⊆ V (vr−k−2Cvr+ℓ−2). As |NG(vr−2)| ≥ k + ℓ, it follows that NG[vr−2] = V (vr−k−2Cvr+ℓ−2).
This proves Claim 2.

We are ready to arrive at the final contradiction. For simplicity, let (see Figure 4 (ii))

y1 = vr−k−2, u1 = vr−k−1, x = vr−2, v = vr−1, y2 = vr+ℓ−2, u2 = vr+ℓ−1.

By Claim 2, vu2, xy2 ∈ E(G). Note that vu2 and xy2 are edges not in E(C), since n ≥ ℓ+ 2. Since
|vCy2| = ℓ− 1 and |u2Cx| = n− ℓ− 1 ≥ k, by Lemma 2.1, we have (v, u2), (x, y2) ∈ A(D). If k = 1,
then the arc (v, u2) and the path vCu2 form a 2-block cycle c(k, ℓ) in D. Thus k ≥ 2.

By Claim 2 again, u1v, xy1 ∈ E(G). Since k ≥ 2 and so n ≥ k + 2, u1v and xy1 are edges not in
E(C). As |u1Cx| = k−1 and |vCy1| = n−k−1 ≥ ℓ, by Lemma 2.1, we have (u1, v), (y1, x) ∈ A(D).
Then the two paths u1Cx+ (x, y2) and (u1, v) + vCy2 have the length k and ℓ, respectively, and so

6



they induce a 2-block cycle c(k, ℓ) in D. We reach a contradiction and this completes the proof of
Lemma 2.2.

Now we can derive Theorem 1.5 from Lemma 2.2.

Proof of Theorem 1.5. It suffices to show that any Hamiltonian digraphD with no c(k, ℓ) is (k+ℓ−1)-
degenerate. Suppose the above statement is false, and let D be a counterexample to it with minimum
number of vertices. That is, D is an n-vertex Hamiltonian digraph with no c(k, ℓ) and is not (k+ℓ−1)-
degenerate, but any Hamiltonian digraph with no c(k, ℓ) and with less than n vertices is (k+ ℓ− 1)-
degenerate. Let G be the underlying graph of D and C = v0, v1, . . . , vn−1, v0 a Hamiltonian cycle of
D.

If δ(G) ≥ k+ℓ, then by Lemma 2.2, D contains a 2-block cycle c(k, ℓ), a contradiction. Thus there
exists some vertex in G which has neighbors less than k + ℓ. We may assume |NG(v0)| ≤ k + ℓ− 1.
Let D′ be the digraph obtained from D by deleting v0 and adding an arc (vn−1, v1), and G′ be the
underlying graph of D′. Clearly D′ is Hamiltonian, G′ is an underlying graph of D′, and G − v0 is
a subgraph of G′. Suppose D′ contains a 2-block cycle c(k, ℓ), say H ′. If the arc (vn−1, v1) is not in
H ′, then H ′ is a subgraph of D, which yields a contradiction. Thus H ′ does use (vn−1, v1). However,
the digraph obtained from H ′ by replacing the arc (vn−1, v1) with the path vn−1, v0, v1 of length two
is a 2-block cycle c(k, ℓ) as well, which is contained in D, a contradiction. Hence, the Hamiltonian
digraph D′ contains no 2-block cycle c(k, ℓ). Then by our hypothesis, D′ is (k + ℓ − 1)-degenerate,
so is G′. Since G− v0 is a subgraph of G′ and |NG(v0)| ≤ k + ℓ− 1, it follows that G (and thus D)
is also (k + ℓ− 1)-degenerate. This completes the proof of Theorem 1.5

3 Proof of Theorem 1.4

In this section, we will prove Theorem 1.4 for general strong digraphs. The plan is first to reduce
the upper bound of χ(D) to χ(F ) for some special subdigraphs F of a strong digraph D (this part
will be done in subsection 3.2); and then we study some structural properties on F in subsection 3.3;
and finally in subsection 3.4, we obtain the upper bound for χ(F ) and complete the proof.

3.1 Some notations

In this subsection, we introduce some notations and terminologies which will play important roles in
the coming proofs. Let D be a digraph and S ⊂ V (D). Let D/S denote the contraction of S in D,
i.e., a digraph obtained by contracting S into a new vertex vS and adding arcs (x, y) of the following
two kinds:

(a) x = vS and y ∈ V (D) \ S, if there exists (w, y) ∈ A(D) for some w ∈ S, and

(b) x ∈ V (D) \ S and y = vS, if there exists (x, w) ∈ A(D) for some w ∈ S.

For a vertex v ∈ V (D/S), the preimage ϕ(v) of v is defined by

ϕ(v) =

{

S if v = vS

{v} otherwise.
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And for B ⊂ V (D/S), the preimage ϕ(B) of B is defined to be ϕ(B) =
⋃

v∈B ϕ(v).
We say a strong digraph T is a cycle-tree if there is an ordering C1, C2, . . . , Cm of all cycles in T

such that for 2 ≤ i ≤ m,

∣

∣ V (Ci) ∩
(

∪j∈[i−1]V (Cj)
)
∣

∣ = 1.

We also say this ordering C1, C2, . . . , Cn is a cycle-tree ordering of T . See Figure 5 for an illustration
of a cycle-tree. A cycle-tree T is called a cycle-path, if there exists an ordering C0, C1, . . ., Cm of
all cycles of T such that |V (Ci) ∩ V (Cj)| ≤ 1 for any distinct i, j ∈ {0, 1, . . . , m}, and the equality
holds if and only if |i − j| = 1. Here, the cycles C0 and Cm are called the end-cycles of T , and the
length of such a cycle-path is defined to be m.

C0

C1

C2

C3

C4

C5

Figure 5: A cycle-tree with a cycle-tree ordering C0, C1, ..., C5.

Cycle-trees have some ‘tree-like’ properties. For two distinct cycles C,C ′ of a cycle-tree T , there
exists a uniquely determined cycle-path in T with end-cycles C and C ′, which we denote by ΛT (C,C

′).
Moreover, for any two vertices u, v ∈ V (T ), there also exist a unique path from u to v and a unique
path from v to u in T , which we denote by uT v and vT u, respectively.

3.2 Reducing χ(D) to χ(F )

Let k and ℓ be integers such that k ≥ ℓ ≥ 1 and k ≥ 2, and let D be a strong digraph with no 2-block
cycle c(k, ℓ). In this subsection, we will partition V (D) so that each part induces a certain subdigraph
F and show that χ(D) can be bounded from above by the maximum χ(F ) (see Lemma 3.3).

We first define a sequence of strong digraphs D(0), D(1), . . ., D(m) and a sequence of cycles C(0),
C(1), . . ., C(m−1) as following. Initially, let D(0) = D. Now suppose that D(i) has been defined. If
χ(D(i)) ≥ 2k − 2, then in view of Theorem 1.2, D(i) has at least one cycle of length at least 2k − 2.
Let C(i) be a longest cycle in D(i) and let D(i+1) = D(i)/V (C(i)), which is the digraph obtained
from D(i) by contracting V (C(i)). Otherwise, χ(D(i)) ≤ 2k − 3 and we then stop. This procedure
is well-defined since for a strong digraph, a contraction of a set of vertices which induces a strong
subdigraph is also strong.

We emphasize that the above definition will be fundamental and we will constantly refer to it in
the coming proofs. Let us collect some properties on D(j) and C(j). It is clear that χ(D(m)) ≤ 2k−3,
and C(i) is a subgraph of D(i) for each i ∈ {0, 1, ..., m− 1}. Denote the collection of the lengths of
C(i)’s by

L := {|C(0)|, |C(1)|, . . . , |C(m−1)|}.

8



The following is also easily obtained from the fact that each C(j) is chosen to be a longest one in
D(j). We omit the proof.

Proposition 3.1. |C(0)| ≥ |C(1)| ≥ . . . ≥ |C(m−1)| ≥ 2k − 2.

For each j ∈ {0, 1, ..., m}, D(j) is also a strong digraph with no 2-block cycle c(k, ℓ).

Proposition 3.2. For each j ∈ {0, 1, ..., m}, D(j) contains no c(k, ℓ).

Proof. We prove by induction on j. The base case j = 0 follows asD contains no c(k, ℓ). Suppose that
D(j) contains no c(k, ℓ). If D(j+1) = D(j)/C(j) contains a 2-block cycle c(k, ℓ) (call this subdigraph
H), then it is straightforward to see that the subdigraph of D(j) obtained from H by un-contracting
C(j) also contains a 2-block cycle c(k, ℓ), a contradiction. This proves the proposition.

For each v ∈ V (D(m)) and j ∈ [m], we recursively define the jth preimage ϕ(j)(v) of v as following:
let ϕ(1)(v) = ϕ(v) ⊆ V (D(m−1)) and for 2 ≤ j ≤ m,

ϕ(j)(v) = ϕ
(

ϕ(j−1)(v)
)

⊆ V (D(m−j)).

In particular, ϕ(m)(v) ⊆ V (D). So ϕ(m)(v) for all v ∈ V (D(m)) form a partition of V (D).
We are ready to prove the main lemma of this subsection.

Lemma 3.3. It holds that

χ(D) ≤ (2k − 3)× max
v∈V (D(m))

χ(D[ϕ(m)(v)]).

Proof. Let t := maxχ(D[ϕ(m)(v)]) over all v ∈ V (D(m)). We recall that χ(D(m)) ≤ 2k − 3. So
V (D(m)) can be partitioned into 2k − 3 independent sets, say B1, B2, . . . , B2k−3. (Here it is possible
that Bi = ∅ for some i ∈ [2k − 3].) For each i ∈ [2k − 3], let Vi be the union of ϕ(m)(v) over all
v ∈ Bi. So V1, ..., V2k−3 form a partition of V (D). Since Bi is independent in D(m), it is easy to see
that for distinct vertices u and v of Bi, there are no arcs between ϕ(m)(u) and ϕ(m)(v) in D. This
shows that for each i ∈ [2k − 3], the chromatic number of each induced subdigraph D[Vi] is at most
t, implying that χ(D) ≤ (2k − 3) · t. This completes the proof of Lemma 3.3

In the rest of this section, we denote by F := D[ϕ(m)(s)] for an arbitrary vertex s ∈ V (D(m)).

3.3 Properties on F

In the following two lemmas we obtain some useful properties on F . Recall that L is the set of
lengths of cycles C(i)’s.

Lemma 3.4. If F has more than one vertex, then F contains a cycle-tree T as a spanning subdigraph
such that the length of every cycle of T is from L (and thus at least 2k − 2).

9



Proof. Recall that for each j ∈ [m], the jth preimage ϕ(j)(v) is a subset of V (D(m−j)). Let

Dj := D(m−j)[ϕ(j)(v)].

We prove by induction on j ∈ [m] that every Dj either consists of {v}, or contains a cycle-tree Tj as
a spanning subdigraph such that the length of every cycle of T is from L. This is clearly sufficient,
as F = Dm. The base case j = 1 is trivial, as by definition, ϕ(v) is either {v} or the cycle C(m−1)

which is a spanning cycle-tree of D1.
Now suppose that the statement holds for some j ∈ [m] and we consider Dj+1. If Dj consists of

{v} (i.e., ϕ(j)(v) = {v}), then ϕ(j+1)(v) = {v} or C(m−j−1), and similarly as the base case, we see
that the statement also holds for Dj+1. Hence, we may assume that Dj contains a cycle-tree Tj as a
spanning subdigraph such that the length of every cycle of Tj is from L.

We point out that Dj and Dj+1 are induced subgraphs of D(m−j) and D(m−j−1), respectively, and
D(m−j) = D(m−j−1)/C(m−j−1), where the new vertex of D(m−j), say u, is obtained by contracting
the cycle C := C(m−j−1). If ϕ(j+1)(v) = ϕ(j)(v), then clearly Dj+1 = Dj and we are done. So we
may assume that ϕ(j+1)(v) 6= ϕ(j)(v). Then it must be the case that u ∈ ϕ(j)(v) = V (Dj) and thus
V (Dj+1) = (V (Dj) \ {u}) ∪ V (C). In fact, we also have Dj = Dj+1/C.

Since u is a vertex of Dj and Dj contains a spanning cycle-tree Tj with the described property,
there exists a non-empty set C of cycles in Tj containing the vertex u. Take C ′ to be any cycle in
C. Then there exist x′, y′ ∈ V (C ′) \ {u} such that (x′, u) and (u, y′) are the two arcs of C ′ incident
to u. Un-contracting back to Dj+1, we see there are two arcs (x′, x) and (y, y′) of Dj+1 for some
x, y ∈ V (C).

We claim that x = y for every such C ′ ∈ C. Suppose for a contradiction that x 6= y. Then there
exists a path P := (y, y′) + y′C ′x′ + (x′, x) in Dj+1 from y to x such that

|P | ≥ 1 + (|C ′| − 2) + 1 = |C ′| ≥ 2k − 2 ≥ k,

where the last inequality is from k ≥ 2. If |yCx| ≥ ℓ, then the paths P and yCx are internally
disjoint paths in Dj+1 from y to x of length at least k and ℓ, respectively, and thus they form a
2-block cycle c(k, ℓ) in Dj+1 (and thus in D(m−j−1)), a contradiction to Proposition 3.2. So we have
|yCx| ≤ ℓ− 1. Then Q := P + xCy is a cycle in Dj+1 such that (note k ≥ ℓ and k ≥ 2)

|Q| = |P |+ |C| − |yCx| ≥ (2k − 2) + |C| − (ℓ− 1) > |C|,

contradicting the fact that C = C(m−j−1) is a longest cycle in D(m−j−1). This proves x = y.
For any C ′ ∈ C, we update C ′ to be a cycle C ′′ in Dj+1 by replacing (x′, u), (u, y′) with

(x′, x), (x, y′). Clearly, |C ′′| = |C ′| ∈ L. We then can define a subdigraph Tj+1 of Dj+1 to be
obtained from Tj by replacing all cycles C ′ ∈ C with the corresponding C ′′ and by adding the new
cycle C(m−j−1). It is easy to check that Tj+1 indeed is a spanning cycle-tree of Dj+1, and the length
of every cycle of Tj+1 is from L. This finishes the proof of Lemma 3.4.

Remark. From the proof of Lemma 3.4, we also see that during the contraction process (say from
D(m−j−1) to D(m−j) by contracting the cycle C = C(m−j−1)), either the spanning cycle-tree Tj+1 of
Dj+1 remains unchanged, or C is a cycle in Tj+1 and Tj = Tj+1/C. Hence, if we look at the whole
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contraction process, at each step the spanning cycle-tree T of F will either remain the same or
contract one of its cycles.

From now on, we assume that F has at least two vertices and let T be a fixed cycle-tree of F
guaranteed in Lemma 3.4. An arc (x, y) in F is called an external arc (with respect to T ), if there
is no cycle of T containing both x and y. The following lemmas tells that for an external arc (x, y)
in F , the path yT x must be short.

Lemma 3.5. Suppose that F has an external arc (x, y). Let Cx and Cy be the cycles of T containing
x and y, respectively, such that |ΛT (Cx, Cy)| is the minimum. Let u and v be the common vertices
of the first and the last two cycles of the cycle-path ΛT (Cx, Cy), respectively. Then both |vT x| and
|yT u| are at most ℓ− 2.

Proof. Let ΛT (Cx, Cy) : C0, C1, . . . , Ct for some t ≥ 1. By Lemma 3.4, the length of each Ci is
from L and at least 2k − 2. Let γ be the maximum of |Ci| over 0 ≤ i ≤ t. Since t ≥ 1, we have
∑t

i=0 |Ci| ≥ γ + (2k − 2).
Let j ∈ [m] be the minimum integer such that |C(j)| = γ. By the minimality, we point out that

all contracting cycles C(i) obtained before D(j) have lengths strictly bigger than γ. By the remark
after Lemma 3.4, this also shows that all cycles in ΛT (Cx, Cy) have not been contracted before D(j),
and as a result, D(j) contains the induced subdigraph H of F restricted on ΛT (Cx, Cy).

Note that by the choice of Cx and Cy, x 6= u, v and y 6= u, v. We first prove that |vT x| ≤ ℓ− 2.
Suppose for a contradiction that |vT x| ≥ ℓ−1. If |vT y| ≥ k, then vT x+(x, y) and vT y are internally
disjoint paths from v to y of length at least ℓ and k, giving a 2-block cycle c(k, ℓ), a contradiction.
Hence, |vT y| ≤ k − 1, implying that |yT v| ≥ ℓ − 1 (as Ct = vT y + yT v). If |xT v| ≥ k, then the
paths (x, y)+ yT v and xT v generate a 2-block cycle c(k, ℓ) in D, a contradiction. So |xT v| ≤ k− 1.
Let C = (x, y) + yT x. Then C is a cycle with length

|C| =

t
∑

i=0

|Ci|+ 1− |xT v| − |vT y| ≥ γ + (2k − 2) + 1− (k − 1)− (k − 1) > γ.

Note that C is also a cycle of H and also a cycle of D(j). However, this is a contradiction, as C(j)

has length γ and is a longest cycle in D(j). Therefore, it cannot happen that |vT x| ≥ ℓ− 1, and so
|vT x| ≤ ℓ− 2.

We then show that |yT u| ≤ ℓ− 2. Suppose not that |yT u| ≥ ℓ− 1. Then the paths (x, y) + yT u
has length at least ℓ. To avoid a 2-block cycle c(k, ℓ), we must have |xT u| ≤ k− 1. But we also have
|uT x| ≤ |vT x| ≤ ℓ−2. Therefore |C0| = |xT u|+ |uT x| ≤ (k−1)+(ℓ−2) < 2k−2, a contradiction.
This completes the proof.

Remark. From the proof of Lemma 3.5, we know that if F has an external arc (x, y), then it cannot
happen that |vT x| ≥ ℓ− 1. This implies that if F has an external arc, then ℓ ≥ 2.

3.4 Coloring F

In this subsection, our goal is to find a proper coloring of F using O(k + ℓ) colors, which completes
the proof of Theorem 1.4. Recall that T is the spanning cycle-tree of F (fixed from Lemma 3.4).
Fix a cycle-tree ordering C0, C1, . . . , Cn of T . For simplicity, we write ΛT (Ci, Cj) as Λ(Ci, Cj).
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We define two spanning subdigraphs F (1) and F (2) of F such that A(F ) = A(F (1)) ∪ A(F (2)).
Before processing, we need to introduce some notations. Let C be a cycle in T with C 6= C0. We
call the second last cycle in Λ(C0, C) the parent of C and denote it as p(C). The unique vertex
p ∈ V (C) ∩ V (p(C)) is called the parent vertex of C. Note that the notions of the parent cycle and
the parent vertex are uniquely defined for all cycles of T except C0. For every v ∈ V (F ), let Cv be
the cycle of T containing v which has the shortest cycle-path to the cycle C0.

We then define a function φ : V (T ) → {0, 1} by letting

φ(v) =

{

1 if Cv 6= C0 and |vCvpv|(= |vT pv|) ≤ ℓ− 2,
0 otherwise

where pv is the parent vertex of Cv, respectively. Let F
(2) be the spanning subdigraph of F such that

A(F (2)) = {(u, v) | (u, v) is an external arc of F and φ(u) 6= φ(v)}.

Let F (1) be the spanning subdigraph of F such that A(F (1)) = A(F ) \A(F (2)). Clearly, φ is a proper
coloring of F (2) and thus we have

χ(F (2)) ≤ 2. (3.1)

To complete the proof of Theorem 1.4, it suffices (as we should see later) to show χ(F (1)) ≤
k+2ℓ− 1. This will be accomplished in Lemma 3.8 which in fact provides a slightly stronger result.
In what follows, we first prove a useful lemma, showing that the external arcs of F (1) satisfy some
tree-like property.1 For an external arc (u, v) of F , we say (u, v) is comparable if either Cu is a cycle
in Λ(Cv, C0) or Cv is a cycle in Λ(Cu, C0).

Lemma 3.6. All external arcs of F (1) are comparable.

Proof. Suppose for a contradiction that F (1) contains an external arc (u, v) which is not comparable.
Note that ℓ ≥ 2 by a remark after Lemma 3.5, and Cu, Cv, C0 are three distinct cycles of T . Let pu
and pv be the parent vertices of Cu and Cv, respectively. Also note that as (u, v) is not comparable,
pu and pv are the common vertices of the first and the last two cycles in Λ(Cu, Cv), respectively.

We claim that φ(u) = 0 and φ(v) = 1. If φ(u) = 1, then |uCupu| ≤ ℓ− 2 and so

|pvT u| ≥ |puT u| = |puCuu| = |Cu| − |uCupu| ≥ (k + ℓ− 2)− (ℓ− 2) = k > ℓ− 2,

a contradiction to Lemma 3.5. Thus φ(u) = 0. If φ(v) = 0, then |vCvpv| ≥ ℓ− 1 and so

|vT pu| ≥ |vT pv| = |vCvpv| > ℓ− 2,

again a contradiction to Lemma 3.5. Thus φ(v) = 1.
Therefore, φ(u) 6= φ(v), implying that (u, v) /∈ F (1). This completes the proof.

Recall that we have fixed a cycle-tree ordering C0, C1, . . . , Cn of T . For every i ∈ [n], let pi be
the parent vertex of Ci. And for every i ∈ {0, 1, ..., n}, let Fi be the induced subdigraph of F (1)

restricted on V (C0) ∪ V (C1) ∪ ... ∪ V (Ci). Note that F0 = F [V (C0)] and Fn = F (1).

1It may help understand the proof if one analogizes this as the property of the depth-first-search tree.
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Figure 6: Λ := Λ(Ci, C0)

Lemma 3.7. For every i ∈ [n] and for any v ∈ V (Ci) \ {pi}, the number of external neighbors 2 of
v in Fi is at most max{0, ℓ− 2}.

Proof. If F has no external arc, then it is trivial. Suppose that F has an external arc. Then ℓ ≥ 2
by the remark after Lemma 3.5. Fix i ∈ [n] and v ∈ V (Ci) \ {pi}. Let Λ = Λ(Ci, C0). By the
definition of the cycle-tree ordering, it follows that all cycles in Λ are contained in V (Fi). In view
of Lemma 3.6, we see that all external arcs of Fi between V (Ci) and V (Fi−1) are those between
V (Ci) and Λ \ V (Ci). Therefore, to prove the lemma, it suffices to show that the number of external
neighbors of v in Λ is at most ℓ− 2.

Let S+(v) be the set of vertices u on Λ such that (v, u) is an external arc of F (1), and let S−(v)
be the set of vertices u on Λ such that (u, v) is an external arc of F (1). Note that the parent vertex
pi of Ci is the common vertex of the first two cycles in Λ. Let w be the common vertex of the last
two cycles in Λ. So w ∈ V (C0). Let w

+ and w− be the vertices of C0 such that |wC0w
+| = ℓ− 2 and

|w−C0w| = ℓ− 2 (see Figure 6).

Claim 1: If S+(v) 6= ∅, then φ(v) = 0 and |S+(v)| ≤ ℓ− 2.

Proof of Claim 1. Suppose that we take any u ∈ S+(v). We first prove that

|uT pi| ≤ ℓ− 2 and φ(v) = φ(u) = 0. (3.2)

To see this, note that Λ(Ci, Cu) is a subpath of Λ. So pi is the common vertex of the first two cycles
in Λ(Ci, Cu). Let z be the common vertex of the last two cycles in Λ(Ci, Cu). By Lemma 3.5, we have
|uT pi| ≤ ℓ− 2 and |piCiv| = |piT v| ≤ |zT v| ≤ ℓ− 2, implying that |vCipi| ≥ 2k− 2− (ℓ− 2) > ℓ− 2
and so φ(v) = 0. Since (v, u) is an external arc in F (1), we have φ(u) = φ(v) = 0.

We then assert that S+(v) ⊆ V (w−T pi). Otherwise, there exists some u ∈ S+(v) such that
u 6∈ V (w−T pi). If u ∈ V (C0), then by the definition of w−, we have |uT pi| > |w−C0w| = ℓ − 2,
a contradiction to (3.2). So Cu 6= C0 and the parent vertex pu of Cu is well-defined. To have
u 6∈ V (w−T pi) and φ(u) = 0, we must have u ∈ zCupu and |uCupu| > ℓ − 2, implying that
|uT pi| ≥ |uCupu| > ℓ− 2, again a contradiction to (3.2). This proves the assertion.

Now let u ∈ S+(v) be the farthest vertex from pi in the path w−T pi. Then S+(v) ⊆ V (uT pi)\{pi}.
By (3.2), |S+(v)| ≤ |V (uT pi) \ {pi}| = |uT pi| ≤ ℓ− 2, proving Claim 1.

Claim 2: If S−(v) 6= ∅, then φ(v) = 1 and |S−(v)| ≤ ℓ− 2.

2We say u is an external neighbor of v in F if (u, v) or (v, u) is an external arc of F .
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Proof of Claim 2. This will be similar to Claim 1. We first prove that for any u ∈ S−(v),

|piT u| ≤ ℓ− 2 and φ(v) = φ(u) = 1. (3.3)

It is clear that the common vertex of the last two cycles in Λ(Cu, Ci) is pi. Let z be the common
vertex of the first two cycles in Λ(Cu, Ci). Then by Lemma 3.5, we have |piT u| ≤ ℓ − 2 and
|vT pi| ≤ |vT z| ≤ ℓ− 2, the latter of which implies that φ(v) = 1. Since (u, v) is an external arc in
F (1), φ(u) = φ(v) = 1.

Next we show S−(v) ⊆ V (piT w+). Suppose not, then there exists some u ∈ S−(v) such that u 6∈
V (piT w+). If u ∈ V (C0) (so u ∈ w+C0w), then by the definition of w+, |piT u| > |wC0w

+| = ℓ− 2,
a contradiction to (3.3). Thus, Cu 6= C0 and the parent vertex pu is well-defined. To have φ(u) = 1
and u 6∈ piT w+, it must hold that u ∈ puCuz and |uCuz| ≤ |uCupu| ≤ ℓ− 2, implying that

|piT u| ≥ |zCuu| = |Cu| − |uCuz| ≥ (2k − 2)− (ℓ− 2) > ℓ− 2,

a contradiction to (3.3).
Let u ∈ S−(v) be the farthest vertex from pi in the path piT w+. Then S−(v) ⊆ V (piT u) \ {pi}.

By (3.3), |S−(v)| ≤ |piT u| ≤ ℓ− 2. This proves Claim 2.

Claims 1 and 2 also show that at most one of S+(v) and S−(v) can be non-empty. Therefore,
since the number of external neighbors of v in Λ is max{|S+(v)|, |S−(v)|}, it is at most ℓ − 2. We
have completed the proof of Lemma 3.7.

Lemma 3.8. F (1) is (k + 2ℓ− 2)-degenerate.

Proof. If F has no external arc, then it is clear that from Theorem 1.5, F is (k + ℓ− 1)-degenerate
by considering the cycles Cn, . . . , C0 (the reverse of the cycle-tree ordering) one by one. In the
following, we assume that F has an external arc and so ℓ ≥ 2 by a remark after Lemma 3.5.

We prove by induction on i ∈ {0, 1, ..., n} that each of Fi is (k + 2ℓ − 2)-degenerate. Note
that this is sufficient, as Fn = F (1). The base case i = 0 follows from Theorem 1.5 directly: since
F0 = F [V (C0)] is Hamiltonian with no 2-block cycle c(k, ℓ), F0 is (k + ℓ − 1)-degenerate and thus
(k + 2ℓ− 2)-degenerate.

Suppose that Fi−1 is (k + 2ℓ− 2)-degenerate. Consider Fi, which is the union of Fi−1, F [V (Ci)]
and the external arcs between V (Ci) and Fi−1. As F [V (Ci)] is Hamiltonian with no c(k, ℓ), by
Theorem 1.5, we know F [V (Ci)] is (k+ ℓ− 1)-degenerate. So there exists a linear ordering v1, . . ., vt
of V (Ci) \ {pi} such that for any j ∈ [t], vj has at most k + ℓ− 1 neighbors in F [{v1, ..., vj−1}]. And
Lemma 3.7 says that every vertex in V (Ci)\{pi} has at most max{0, ℓ−2} = ℓ−2 external neighbors
in V (Fi−1) \ {pi}. Combining the above, the ordering v1, . . ., vt of V (Ci) \ {pi} also satisfies that for
any j ∈ [t], vj has at most (k+ℓ−1)+(ℓ−2)+1 = k+2ℓ−2 neighbors in F [V (Fi−1)∪{v1, ..., vj−1}].
This, together with that Fi−1 is (k+2ℓ−2)-degenerate, implies that Fi is also (k+2ℓ−2)-degenerate,
finishing the proof of Lemma 3.8.

Finally, we are ready to prove Theorem 1.4.
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Proof of Theorem 1.4. Let D be a strong digraph with no 2-block cycle c(k, ℓ). Among all vertices
in V (D(m)), choose v ∈ V (D(m)) such that F := D[φ(m)(v)] has the maximum χ(F ). Define F (1) and
F (2) as before. By (3.1) and Lemma 3.8, there exist proper colorings ρ1 : V (F ) → [k + 2ℓ − 1] of
F (1) and ρ2 : V (F ) → {0, 1} of F (2), respectively. Define ρ : V (F ) → [k + 2ℓ− 1]× {0, 1} by letting
for every v ∈ V (F ), ρ(v) = (ρ1(v), ρ2(v)). Since A(F ) = A(F (1)) ∪ A(F (2)), it is easy to verify that
ρ is a proper coloring of F , which implies that χ(F ) ≤ 2(k + 2ℓ− 1). By Lemma 3.3, it holds that
χ(D) ≤ 2(2k − 3)(k + 2ℓ− 1).

It will be interesting to improve the upper bound of Theorem 1.4 further, for instance, to O(k+ℓ).
We direct interested readers to [6] and the survey [11] for many related problems.
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